Chemistry Letters 1998 51

Selective Removal of Cobalt Oxide from Cobalt-loaded Alumina Catalysts and Its Effect on the Activity for Selective Catalytic Reduction of Nitrogen Monoxide by Ethene in Excess Oxygen

Noriyasu Okazaki,* Shinya Tsuda, Yoshikazu Shiina, and Akio Tada Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Kitami 090

(Received September 16, 1997; CL-970719)

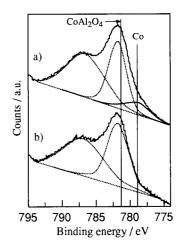
The selective removal of Co₃O₄ from a cobalt-loaded alumina catalyst resulted in increased activity for the title reaction, indicating that Co₃O₄ inhibited the reaction but that the residual CoAl₂O₄-like species acted as catalytically active species. CoAl₂O₄-like species were sufficiently active for the oxidation of NO to NO₂ but much less active for the oxidation of ethene (a side reaction).

Among NO_x removal processes, most of the research interest has been focused on the selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen. After the reports of Iwamoto et al. A

$$NO + O_2 \rightarrow NO_2 \tag{1}$$

$$NO_2 + C_2H_4 \rightarrow (C_xH_yO_z) \rightarrow N_2 + CO_x + H_2O$$
 (2)

$$C_2H_4 + O_2 \rightarrow CO_X + H_2O \tag{3}$$


Recently, it has been reported that the cobalt species and alumina of $\text{Co/Al}_2\text{O}_3$ function cooperatively in $\text{NO+C}_2\text{H}_4+\text{O}_2$; the cobalt species accelerate step (1) and the alumina catalyzes step (2). 13 Although many studies 8 , $^{13-15}$ have been made on the role of Co_3O_4 and $\text{Co}_4\text{O}_2\text{O}_4$, there is still controversy about it. That is partly due to the difficulty in eliminating the catalytic function of one of the two cobalt species. Therefore, we attempted to prepare a special $\text{Co/Al}_2\text{O}_3$, in which Co_3O_4 was selectively removed, and investigated the activities for $\text{NO+C}_2\text{H}_4+\text{O}_2$ and steps (1) and (3).

A Co/Al₂O₃ was prepared by impregnating Al₂O₃(ALOA) with a cobalt acetate solution, followed by drying the resulting slurries at 120 °C for 18 h and by calcining at 500 °C or 800 °C for 4 h in air. Alumina(ALOA) was produced by heating its precursor at 600 °C for 24 h, which was prepared by the controlled hydrolysis of aluminum tri-isopropoxide. The removal of Co₃O₄ in Co/Al₂O₃ was performed first by converting it to metallic cobalt and then by dissolving the resulting metallic cobalt in a nitric acid solution (1 M). The metallization was done by heating the original catalysts at 500 °C for 3 h in hydrogen stream. The dissolution was carried out as follows: the reduced samples were immersed in the nitric acid solution at 60 °C for 2 h, and the resulting precipitate was filtered, washed with the nitric acid solution and a distilled water, dried at 120 °C for 18 h. All the catalysts were further calcined at 500 °C or 800 °C for 4 h in air before use. A Co/Al₂O₃ catalyst was denoted as follows: Co(loading/wt%)/Al₂O₃(calcination temp./°C, MD), where MD stands for the metallization-dissolution treatment. With a Rigaku XPS-7000 spectrometer, X-ray photoelectron spectroscopy (XPS) analysis was performed using a AlK\alpha X-ray source operated at 10 kV and 30 mA. The binding

energies were corrected by using the value of 285.0 eV for the C 1s level resulting from the contaminated carbon. The reproducibilities of the values thus obtained were within \pm 0.2 eV. Experiments of NO+C₂H₄+O₂, NO+O₂, and C₂H₄+O₂ reactions were performed using a fixed-bed flow tubular reactor at a W/F of 0.18 g·s·cm⁻³ (catalyst, 0.4 g; total flow rate, 130 cm³·min⁻¹). The formation of N₂O in NO+C₂H₄+O₂ was negligible.

When Co(5)/Al₂O₃(500), which is known to have both Co₃O₄ and CoAl₂O₄, ¹⁵ was heated at 500 °C for 3 h in hydrogen stream, the color of the sample changed to black from dark green. Figure 1a indicates that by this process its Co₃O₄ was converted to metallic cobalt. Subsequently the obtained sample was treated with the nitric acid solution, then the color changed to blue, suggesting the presence of CoAl₂O₄. Actually metallic cobalt was dissolved retaining CoAl₂O₄ (Figure 1b). Such CoAl₂O₄-like species will be designated as cobalt aluminate hereinafter. By the MD treatment, 45% of the total Co species was removed, while by the dissolution alone 20% was removed and the color was green.

Surprisingly, $Co(5)/Al_2O_3(500, MD)$ was more active than $Co(5)/Al_2O_3(500)^{15}$ for $NO+C_2H_4+O_2$ (Figure 2). The effect of the MD treatment suggests that removed Co_3O_4 acted as an undesirable cobalt species and at the same time the residual cobalt aluminate acted as an effective cobalt species. Although CO was formed along with CO_2 over $Co(5)/Al_2O_3(500, MD)$ but only CO_2 was observed over $Co(5)/Al_2O_3(500)$. The temperature window of $Co(5)/Al_2O_3(500, MD)$ located at the lower temperature side than that of alumina alone. These indicate that its cobalt aluminate evidently promoted $NO+C_2H_4+O_2$. This seems to be a new direct evidence for the fact that cobalt aluminate acts as an active cobalt species in Co/Al_2O_3 . In addition, by the MD treatment, the activity of $Al_2O_3(800)$ alone for $NO+C_2H_4+O_2$ was not changed (Figure 2). On the other hand, in the case of $Co(5)/Al_2O_3(800)$, which is

Figure 1. XPS spectra of $Co(5)/Al_2O_3$ calcined at 500 °C. a) reduced with hydrogen at 500 °C for 3 h, b) treated with a nitric acid solution (1 M) at 60 °C for 2h after hydrogen reduction.

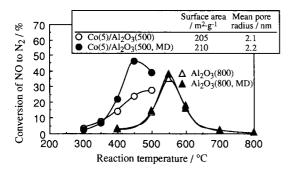


Figure 2. Temperature dependence of the catalytic activity of various catalysts for NO+ $C_2H_4+O_2$. NO = 1000 ppm, C_2H_4 = 500 ppm, $O_2 = 2.0\%$, He = balance.

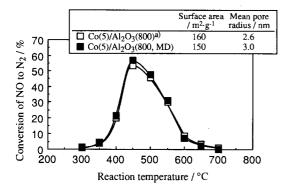


Figure 3. Temperature dependence of the catalytic activity of Co(5)/Al₂O₃ catalysts for NO+C₂H₄+O₂. Composition: the same as that in Figure 2. a) Ref. 15.

known to have only CoAl₂O₄¹⁵, the MD treatment caused no change in activity for NO+C₂H₄+O₂ (Figure 3). This supports that cobalt aluminate is an active cobalt species. Over Co(5)/ Al₂O₃(800) and Co(5)/Al₂O₃(800, MD), CO was formed along with CO₂. As shown in Figures 2 and 3, the MD treatment did not result in distinct change in specific surface area and mean pore radius.

Figure 4 shows the activity of various catalysts for NO+O₂. Clearly, the activity of Co(5)/Al₂O₃(500, MD) was higher than that of Al₂O₃(800), indicating that cobalt aluminate is active for step (1). The activity of Co(5)/Al₂O₃(500) was much higher than that of Co(5)/Al₂O₃(500, MD). This will be due to the presence of Co₃O₄, a catalyst for oxidation, in Co₍₅₎/Al₂O₃(500).

As can be seen in Figure 5, the activity of Co(5)/Al₂O₃(500, MD) for $C_2H_4+O_2$ was remarkably lower than $C_0(5)/Al_2O_3(500)$; the activity of $Co(5)/Al_2O_3(500, MD)$ was similar to that of $Co(5)/Al_2O_3(500, MD)$ $Al_2O_3(800)$. These suggest that in the case of $Co(5)/Al_2O_3(500)$, Co₃O₄ is allowed to catalyze step (3). On the other hand, in the case of Co(5)/Al₂O₃(500, MD), step (3) seems to be suppressed to a minimum level, indicating that cobalt aluminate is much less active for step (3).

In conclusion, the MD treatment was confirmed to be an useful technique to remove selectively Co₃O₄ from Co/Al₂O₃, and by using Co₃O₄-free Co₅/Al₂O₃ it was revealed that cobalt aluminate has sufficient activity for step (1), but nevertheless quite

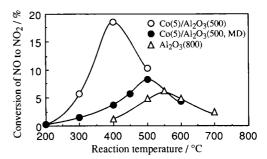


Figure 4. Temperature dependence of the catalytic activity of various catalysts for NO+O₂. NO = 1000 ppm, O₂ = 2.0%, He = balance.

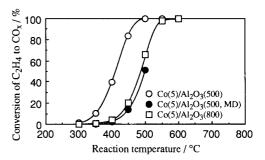


Figure 5. Temperature dependence of the catalytic activity of various catalysts for $C_2H_4+O_2$. $C_2H_4 = 500$ ppm, $O_2 = 2.0\%$, He = balance.

low activity for step (3).

This work was supported in part by a Grant-in-Aid for Scientific Research on a Priority Area "Catalytic Chemistry of Unique Reaction Fields - Extreme Environmental Catalysts" (No. 08232208) from the Ministry of Education, Science, Sports and Culture, Japan.

References

- M. Iwamoto and H. Yahiro, Catal. Today, 22, 5 (1994).
- M. Iwamoto, H. Yahiro, S. Shundo, Y. Yuu, and N. Mizuno, Appl. Catal., 69, L15 (1991)
- S. Sato, Y. Yuu, H. Yahiro, N. Mizuno, and M. Iwamoto, Appl. Catal., 70, L1 (1991).
- W. Held, A. Koenig, T. Richter, and L. Puppe, SAE Paper 900496 (1990).
- H. Hamada, Catal. Today, 22, 21 (1994).
- Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki, and T. Ito, Catal. Lett., 6, 239 (1990). H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., **64**, L1 (1990). Y. Torikai, H.Yahiro, N. Mizuno, and M. Iwamoto, Catal. Lett., **9**, 91 (1991).
- H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 75, L1 (1991)
- M. Sasaki, H. Hamada, Y. Kintaichi, and T. Ito, Catal. Lett., 15, 297 (1992).
- T. Miyadera, Appl. Catal. B: Environmental, 2, 199 (1993).
 T. Miyadera and K. Yoshida, Chem. Lett., 1993, 1483.
- Y. Ukisu, S. Sato, G. Muramatsu, and K. Yoshida, Catal. Lett., 16, 11 (1992). H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, and H. Tsuchida,
- Catal. Today, 29 (1996) 53.
- H. Hamada, M. Haneda, N. Kakuta, H. Miura, K. Inami, T. Namba, W. Q. Hua, A. Ueno, H. Ohfune, and Y. Udagawa, Chem. Lett., 1997, 887.
- N. Okazaki, Y. Katoh, Y. Shiina, A. Tada, and M. Iwamoto, Chem. Lett., 1997, 889.